RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 2, Pages 192–205 (Mi mzm1604)

An extremum problem on a class of differentiable functions of several variables

D. V. Gorbachev

Tula State University

Abstract: On the multidimensional class $W_0^rH_\omega^{(n)}$ of continuous periodic functions $F$ with the $r$th derivative $D^rF$ from
$$ H_\omega^{(n)} =\biggl\{f\in C\bigm| |f(x)-f(y)|\le\sum_{i=1}^n\omega_i(|x_i-y_i|) \forall x,y\in\mathbb R^n\biggr\} $$
(where the $\omega_i(x_i)$ are the convex moduli of continuity) and zero mean with respect to each variable, we obtain the exact value of
$$ M_r(\omega) =\sup_{F\in W_0^rH_\omega^{(n)}}\|F\|_C. $$


UDC: 517.5

Received: 11.12.1996

DOI: 10.4213/mzm1604


 English version:
Mathematical Notes, 1997, 62:2, 160–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026