RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 61, Issue 6, Pages 864–872 (Mi mzm1570)

A general class of inequalities with mixed means

R. Kh. Sadikova

M. V. Lomonosov Moscow State University

Abstract: Suppose $(T,\Sigma,\mu)$ is a space with positive measure, $f\colon\mathbb R\to\mathbb R$ is a strictly monotone continuous function, and $\mathfrak G(T)$ is the set of real $\mu$-measurable functions on $T$. Let $x(\cdot)\in\mathfrak G(T)$ and $(f\circ x)(\cdot)\in L_1(T,\mu)$. Comparison theorems are proved for the means $\mathfrak M_{(T,\mu,f)}\bigl (x(\cdot)\bigr)$ and the mixed means $\mathfrak M_{(T_1,\mu _1,f_1)}\bigl(\mathfrak M_{(T_2,\mu_2,f_2)}\bigl(x(\cdot)\bigr)\bigr)$ these inequalities imply analogs and generalizations of some classical inequalities, namely those of Hölder, Minkowski, Bellman, Pearson, Godunova and Levin, Steffensen, Marshall and Olkin, and others. These results are a continuation of the author's studies.

UDC: 517.5

Received: 03.08.1995

DOI: 10.4213/mzm1570


 English version:
Mathematical Notes, 1997, 61:6, 724–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026