RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 61, Issue 5, Pages 717–727 (Mi mzm1553)

This article is cited in 3 papers

A multidimensional analog of a theorem due to Zygmund

V. A. Okulov

M. V. Lomonosov Moscow State University

Abstract: Zygmund proved an inequality describing the dependence of the modulus of continuity of the adjoint function on that of the original function lying in the space of $2\pi$-periodic continuous functions. The present article contains estimates of partial moduli of continuity of the adjoint function of several variables in the space $C$. Examples show that these estimates are sharp.

UDC: 517.518.475

Received: 27.11.1995

DOI: 10.4213/mzm1553


 English version:
Mathematical Notes, 1997, 61:5, 600–608

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026