RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 76, Issue 6, Pages 922–927 (Mi mzm151)

This article is cited in 8 papers

Lower Bounds for the Riemann Zeta Function on the Critical Line

M. E. Changa

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We establish a relation between the lower bound for the maximum of the modulus of $\zeta(1/2+iT+s)$ in the disk $|s|\le H$ and the lower bound for the maximum of the modulus of $\zeta(1/2+iT+it)$ on the closed interval $|t|\le H$ for $0<H(T)\le1/2$. We prove a theorem on the lower bound for the maximum of the modulus of $0<H(T)\le1/2$ on the closed interval $|t|\le H$ for $40\le H(T)\le\log\log T$.

UDC: 511

Received: 30.06.2004

DOI: 10.4213/mzm151


 English version:
Mathematical Notes, 2004, 76:6, 859–864

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026