RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 4, Pages 744–751 (Mi mzm14933)

Papers published in the English version of the journal

A Note on Relative Power Integral Basis of Number Fields Defined by $x^n + ax^m - b$

S. Kaura, A. Jakharb

a Department of Mathematics, Shanghai University, China
b Department of Mathematics, IIT Madras, Chennai, India

Abstract: Let $K$ be a number field with ring of algebraic integers $R$. Let $L=K(\alpha)$ be a finite extension of $K$ where $\alpha$ is a root of an irreducible polynomial of the type $f(x)=x^n+ax^m-b$ belonging to $R[x]$ ($n, m\in \mathbb{N}$ and $n>m $). In this paper, we give a set of necessary and sufficient conditions to study the monogenity of $L$ over $K$. We also provide a class of finite separable extensions $L$ of $K$ for which $L/K$ is not monogenic. Our results extend the one given in [1].

Keywords: Dedekind ring, relative integral basis.

Received: 08.03.2025
Revised: 21.07.2025

Language: English


 English version:
Mathematical Notes, 2025, 118:4, 744–751

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026