RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 4, Pages 697–713 (Mi mzm14931)

Papers published in the English version of the journal

Existence and Asymptotic Behavior of Solutions of a Nonhomogeneous Quasilinear Schrödinger–Poisson System

Y. Wang, J. Zhang

Inner Mongolia Normal University, Hohhot, China

Abstract: In this paper, we study the existence and asymptotic behaviour of solutions of the nonhomogeneous quasilinear Schrödinger–Poisson system
\begin{equation*} \begin{cases} -\Delta u +V(x)u+\lambda \phi u=f(x, u)+g(x),&x\in \mathbb{R}^3 , -\Delta \phi -\varepsilon^4 \Delta_4 \phi=\lambda u^2 ,&x \in \mathbb{R}^3, \end{cases} \end{equation*}
where $\lambda$ and $\varepsilon$ are positive parameters,
\begin{equation*} \Delta _4\phi =\operatorname{div}(|\nabla \phi|^2 \nabla \phi), \end{equation*}
$V$ is a continuous and coercive potential function with positive infimum, and $f$ is a Carathéodory function defined on $\mathbb{R}^3 \times \mathbb{R}$ and satisfying the classic Ambrosetti–Rabinowitz condition. Under some suitable assumptions on $V(x)$, $f(x,u)$, and $g(x)$, we obtain the existence of two different energy nontrivial solutions by use of variational methods and truncation technique for sufficiently small $\lambda$ and fixed $\varepsilon$. Moreover, the asymptotic behaviour of these solutions is studied whenever $\varepsilon$ and $\lambda$, respectively, tend to zero.

Keywords: variational method, nonhomogeneous, quasilinear Schrödinger–Poisson system.

Received: 12.06.2024
Revised: 27.03.2025

Language: English


 English version:
Mathematical Notes, 2025, 118:4, 697–713

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026