RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 61, Issue 1, Pages 57–68 (Mi mzm1482)

This article is cited in 4 papers

Measure-valued almost periodic functions

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: We consider Stepanov almost periodic functions $\mu\in S(\mathbb R,\mathscr M)$ ranging in the metric space $\mathscr M$ of Borel probability measures on a complete separable metric space $\mathscr U$ is equipped with the Prokhorov metric). The main result is as follows: a function $t\to\mu[\cdot;t]\in\mathscr M$, $t\in\mathbb R$, belongs to $S(\mathbb R,\mathscr M)$ if and only if for each bounded continuous function $\mathscr F\in C_b(\mathscr U,\mathbb R)$, the function $\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot]$ is Stepanov almost periodic (of order 1) and
$$ \operatorname{Mod}\mu=\sum_{\mathscr F\in C_b(\mathscr U,\mathbb R)}\operatorname{Mod}\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot]. $$


UDC: 517.9

Received: 07.04.1995

DOI: 10.4213/mzm1482


 English version:
Mathematical Notes, 1997, 61:1, 48–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026