RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 4, Pages 885–894 (Mi mzm14725)

Papers published in the English version of the journal

On Best Simultaneous Approximation of Analytic Functions in the Weighted Bergman Space

M. Sh. Shabozovab, D. K. Tukhlievc

a Tajik National University, Dushanbe
b Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
c Khujand State University

Abstract: In the Bergman space $B_{q,\gamma}$ $(1\leq q<\infty$, $\gamma:=\gamma(|z|)> 0)$, we find sharp inequalities between the best simultaneous approximation of a function and the averaged moduli of smoothness $\omega_2(f^{(r)},t)_{H_{q,R}}$ of the angular boundary values of the $r$th derivatives. These inequalities are applied to the problem of evaluation of the supremum of best simultaneous approximations of some classes of functions defined in terms of moduli of smoothness and lying in the Bergman space $B_{q,\gamma}$.

Keywords: extremal problem, simultaneous approximation of functions and their derivatives, algebraic polynomial, modulus of continuity, Hardy space, Bergman space.

MSC: 30E10, 30E25

Received: 04.06.2025
Revised: 04.06.2025

Language: English


 English version:
Mathematical Notes, 2025, 118:4, 885–894

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026