RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 3, Pages 407–416 (Mi mzm14621)

On the Uniqueness of Haar Series Converging over Subsequences of Partial Sums

G. G. Gevorkyan

Yerevan State University

Abstract: We prove the existence of a sequence of positive integers $n_i$, $i\in \mathbb{N}$, that has zero density in $\mathbb{N}$ and possesses the following property: if the subsequence
$$ S_{n_i}(x)=\sum_{k=1}^{n_i}a_k\chi_k(x) $$
of partial sums of a Haar series converges everywhere to an everywhere finite integrable function $f$, then this series is the Fourier–Haar series of $f$.

Keywords: Haar system, uniqueness theorem, Fourier–Haar series.

UDC: 517.53

Received: 16.01.2025
Revised: 07.03.2025

DOI: 10.4213/mzm14621


 English version:
Mathematical Notes, 2025, 118:3, 510–518

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026