RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 6, Pages 898–909 (Mi mzm14593)

On the positive definiteness of functions of the form $h(\rho(x))+\beta\rho(x)h'(\rho(x))$

V. P. Zastavnyi

Donetsk State University

Abstract: In the paper, the following problem is considered for positive definite functions on $\mathbb{R}^n$ (the class $\Phi(\mathbb{R}^n)$). Let a function $h$ be continuous on $[0,+\infty)$, differentiable on the interval $(0,+\infty)$, $th'(t)\to 0$ as $t\to+0$, $h(t)\not\equiv h(0)$, and $h(\rho(x))\in\Phi(\mathbb{R}^n)$. Here the function $\rho$ is continuous on $\mathbb{R}^n$, $\rho(x)>0$ for $x\ne0$, and $\rho(tx)=|t|\rho(x)$, for $x\in \mathbb{R}^n$, $t\in\mathbb{R}$. For $\beta\in\mathbb{R}$, we define the function $H_\beta(t):=h(t)+\beta th'(t)$ for $t>0$ and set $H_\beta(0):=h(0)$. It is required to find the set of $\beta\in\mathbb{R}$ for which $H_\beta(\rho(x))\in\Phi(\mathbb{R}^n)$. Under the above assumptions, this set is a closed interval $[-\beta(h,\mathbb{R}^n,\rho), \widetilde{\beta}(h,\mathbb{R}^n,\rho)]$ which contains the point $0$. In Theorem 1, formulas for the ends of this closed interval are found. In the case of the Euclidean norm, when $(\mathbb{R}^n,\rho)=\ell_{2}^{n}$, in Theorem 2, for a wide class of functions $h$, the exact value for the right end is found: $\widetilde{\beta}(h,\ell_{2}^{n})=1/n$. In Theorem 3, for the function $h_p(t)=\exp(-t^p)$ in the case of $(\mathbb{R}^n,\rho)=\ell_{q}^{n}$, exact values for the right end and, in several cases, for the left one are found: if $0<p\leqslant q\leqslant 2$, then $\widetilde{\beta}(h_p,\ell_{q}^{n})=1/n$, ${\beta}(h_q,\ell_{q}^{n})={\beta}(h_q,\ell_{q}^{1})/n$, ${\beta}(h_1,\ell_{1}^{n})=1/n$, ${\beta}(h_1,\ell_{2}^{n})=1$, and ${\beta}(h_2,\ell_{2}^{n})=0$.

Keywords: positive definite function, completely monotone function, Schoenberg problem.

UDC: 517.5+519.213

MSC: 42A82

Received: 14.12.2024
Revised: 17.01.2025

DOI: 10.4213/mzm14593


 English version:
Mathematical Notes, 2025, 117:6, 1012–1022

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026