RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 1, Pages 135–142 (Mi mzm14590)

This article is cited in 1 paper

Recurrence of Integral Zeros for Ergodic Flows

V. V. Ryzhikov

Lomonosov Moscow State University

Abstract: Let $T_t$ be a measure-preserving measurable ergodic flow on a probability space $(X,\mu)$. Suppose given a zero-mean function $f\colon X\to\mathbb R$ and a set $A\subset X$ with $\mu(A)>0$. Then, for almost all $x\in A$ such that $f(x)\neq 0$, there exists a sequence $t_k\to\infty$ satisfying the conditions
$$ \int_0^{t_k} f(T_s x)\,ds=0, \qquad T_{t_k}x\in A. $$


Keywords: recurrence, integrals along trajectories, cylindrical flow, ergodicity.

UDC: 517.987

PACS: 517.9

MSC: 517.987

Received: 12.12.2024

DOI: 10.4213/mzm14590


 English version:
Mathematical Notes, 2025, 118:1, 165–172

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026