RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 4, Pages 607–624 (Mi mzm14541)

Lower Bounds for Additive Complexity of Linear Operators and Bilinear Algorithms for Matrix and Polynomial Multiplication over $GF(2)$

I. S. Sergeeva

a Research Institute "Kvant", Moscow

Abstract: For a linear operator with explicitly given Boolean $n \times n$-matrix, we find the lower bound $5n-o(n)$ for complexity of implementation by additive circuits over $GF(2)$. The lower bound $3n-o(n)$ is obtained for explicitly given circulant matrices and Sierpinski matrices of size $n \times n$. In passing, we establish the following lower bounds for additive complexity of bilinear algorithms: $(4-o(1))n^2$ for multiplication of matrices of size $n \times n$, $5n-o(n)$ for multiplication of polynomials of degree $n-1$, and $4n-o(n)$ for the cyclic convolution of order $n$ over $GF(2)$.

Keywords: additive circuit, bilinear algorithm, linear Boolean operator, Sierpinski matrix, Sidon set, lower bound for complexity, direct sum of matrices, matrix multiplication, polynomial multiplication, cyclic convolution, circulant matrix, cycle in graph.

UDC: 519.71

Received: 14.10.2024
Revised: 31.12.2024

DOI: 10.4213/mzm14541


 English version:
Mathematical Notes, 2025, 118:4, 848–862

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026