RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 6, Pages 923–940 (Mi mzm14508)

This article is cited in 2 papers

Asymptotic expansions of solutions to $n \times n$ systems of ordinary differential equations with a large parameter

A. P. Kosarevab, A. A. Shkalikovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: The $n \times n$ system of ordinary differential equations
$$ y' - \sum_{l=0}^{m}\lambda^{-l}B_l(x)y - \lambda^{-m}C(x, \lambda)y=\lambda A(x)y, \qquad x \in [0, 1], \quad m \in \mathbb{N}, $$
is considered, where
$$ A=\operatorname{diag}\{a_1, \dots, a_n\}, \qquad B_l=\{b_{jk}^l\}, \qquad C=\{c_{jk}(\cdot, \lambda)\}, \qquad y=(y_1, \dots, y_n)^\top. $$
It is assumed that, for some integer $m\ge 1$, the entries of the matrices $A(x)$ and $B_l(x)$ are complex-valued functions satisfying the conditions
\begin{gather*} a_i \in W_1^m[0, 1], \quad b^{0}_{ii} \in W_1^{m-1}[0, 1], \quad b^{0}_{jk} \in W_1^{m}[0, 1], \qquad j \ne k, \quad i, j, k=1, \dots, n, \\ b_{jk}^{l} \in W_1^{m-l}[0, 1], \qquad j, k=1, \dots, n, \quad l=1, \dots, m, \end{gather*}
where the $W^k_1$ are the Sobolev spaces, and the entries of the matrix $C(\cdot, \lambda)$ are integrable functions on the interval $[0, 1]$ such that $\|c_{ij}(\cdot, \lambda)\|_{1} \to 0$ in the metric of the space $L_1[0, 1]$ uniformly as $\lambda \to \infty$, $\lambda \in \mathbb{C}$.
The main results of the paper refine and supplement classical results of Birkhoff–Tamarkin–Langer theory concerning asymptotic expansions of the fundamental solutions of the system under consideration in sectors of the complex plane. Special attention is given to minimal smoothness requirements on the matrix entries and to explicit expressions for matrices in asymptotic expansions.

Keywords: asymptotics of solutions of ordinary differential equations and systems, spectral asymptotics, Birkhoff asymptotics.

UDC: 517

Received: 15.09.2024

DOI: 10.4213/mzm14508


 English version:
Mathematical Notes, 2024, 116:6, 1312–1325

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026