RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 4, Pages 595–602 (Mi mzm14495)

Papers published in the English version of the journal

Uniform bound of solutions of Chern–Simons–Higgs equations on locally finite graphs

T. Nguyena, N. C. Minhb, D. T. Quyetc

a Hanoi University of Industry, Vietnam
b Hanoi University of Science and Technology, Vietnam
c Academy of Finance, Hanoi, Vietnam

Abstract: In this paper, we prove that any bounded solution $u$ of the Chern–Simons–Higgs type equation
\begin{equation*} -\Delta_p u=u^2(1-u^2)u-\dfrac{1}{2}(1-u^2)^2u\quad\text{in}\ \ V \end{equation*}
satisfies $|u|\leq 1$, where $V$ is a locally finite graph and $\Delta_p $ is the $p$-Laplacian on $V$, $p>1$. We will show that the boundedness assumption is necessary by giving a counter-example. Moreover, we also obtain analogue results for the Chern–Simons–Higgs type system
\begin{equation*} \begin{cases} -\Delta_p u=u^2(1-u^2-\gamma v^2)u-\dfrac{1}{2}(1-u^2-\gamma v^2)^2u\quad\text{in}\ \ V, \\[10pt] -\Delta_p v=v^2(1-v^2-\gamma u^2)v-\dfrac{1}{2}(1-v^2-\gamma u^2)^2v\quad\text{in}\ \ V, \end{cases} \end{equation*}
where $\gamma>0$.

Keywords: Chern–Simons–Higgs equations, Boundedness of solutions, $p$-Laplace operator, locally finite graph.

MSC: 35BR02, 35B45, 05C09

Received: 05.05.2024
Revised: 05.05.2024

Language: English


 English version:
Mathematical Notes, 2025, 117:4, 595–602

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026