RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 1, Pages 127–134 (Mi mzm14494)

On Two-Distance $(0,1)$-Counterexamples to Borsuk's Conjecture in $l_p$ Metrics

A. M. Raigorodskiiabcd, K. A. Smolenskiia

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude

Abstract: Various estimates of the Borsuk number are discussed. A method for constructing two-distance counterexamples to Borsuk's conjecture by using $(0,1)$-vectors in spaces with $l_p$ metrics is considered.

Keywords: Borsuk's conjecture, Borsuk number, independence number, graph of diameters, forbidden distance.

UDC: 519.1

Received: 04.09.2024

DOI: 10.4213/mzm14494


 English version:
Mathematical Notes, 2025, 118:1, 158–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026