RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 64, Issue 5, Pages 692–700 (Mi mzm1445)

This article is cited in 3 papers

On the structure of rigid semistable sheaves on algebraic surfaces

B. V. Karpov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Let $S$ be a smooth projective surface, let $K$ be the canonical class of $S$ and let $H$ be an ample divisor such that $H\cdot K<0$. We prove that for any rigid sheaf $F$ ($\operatorname{Ext}^1(F,F)=0$) that is Mumford–Takemoto semistable with respect to $H$ there exists an exceptional set $(E_1,\dots,E_n)$ of sheaves on $S$ such that $F$ can be constructed from $\{E_i\}$ by means of a finite sequence of extensions.

UDC: 512.723

Received: 20.05.1996

DOI: 10.4213/mzm1445


 English version:
Mathematical Notes, 1998, 64:5, 600–606

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026