RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 4, Pages 505–515 (Mi mzm14406)

Weak Leibniz algebras

A. S. Dzhumadil'daev

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty

Abstract: An algebra with the identities $[a,b]c=2a(bc)-2b(ac)$ and $a[b,c]=2(ab)c-2(ac)b$ is called a weak Leibniz algebra. It is shown that any weak Leibniz operad is self-dual and not Koszul. It is also proved that the polarization of any weak Leibniz algebra is a transposed Poisson algebra and vice versa, the depolarization of any transposed Poisson algebra is a weak Leibniz algebra.

Keywords: Leibniz algebra, Koszul operad, associative-admissible algebra, Lie-admissible algebra.

UDC: 512.554

MSC: 17A32

Received: 11.06.2024

DOI: 10.4213/mzm14406


 English version:
Mathematical Notes, 2025, 117:4, 547–555

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026