RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 64, Issue 5, Pages 643–647 (Mi mzm1440)

On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$

G. G. Amanzhaev

M. V. Lomonosov Moscow State University

Abstract: For discrete analogs of classes of functions of finite smoothness, we study the quantity $\log\operatorname{Approx}$ characterizing the minimal necessary length of tables that allow us to reconstruct functions from these classes with error not exceeding 1 in the metric of the space $L^p$.

UDC: 517.5+519.7

Received: 04.02.1997

DOI: 10.4213/mzm1440


 English version:
Mathematical Notes, 1998, 64:5, 557–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026