RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 1, Pages 32–47 (Mi mzm14322)

Regularity of Calderón–Zygmund operators in domains

A. V. Vasinab

a Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $D\subset \mathbb{R}^d$ be a bounded Lipschitz domain, let $\omega$ be a modulus of continuity of a high order of smoothness, and let $T$ be a Calderón–Zygmund convolution operator with even kernel. Using the recent $T(P)$ boundedness criterion found by the author with E. Doubtsov, we prove that the operator $T$ is bounded in the Zygmund space $\mathcal{C}_{\omega}(D)$ if the smoothness of the boundary of $D$ is by one higher than that of $\mathcal{C}_{\omega}(D)$. The proof is based on estimates for the potentials with Calderón–Zygmund kernels of the characteristic function of a domain with a polynomial boundary.

Keywords: Zygmund spaces on smooth domains, Calderón–Zygmund operators with even kernel.

UDC: 517.51+517.98

MSC: 42B20+42B35

Received: 26.03.2024
Revised: 27.05.2024

DOI: 10.4213/mzm14322


 English version:
Mathematical Notes, 2025, 117:1, 28–41

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026