RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 64, Issue 4, Pages 564–572 (Mi mzm1431)

This article is cited in 1 paper

A priori estimates of strong solutions of semilinear parabolic equations

G. G. Laptev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We study an initial boundary value problem for the semilinear parabolic equation
$$ \frac{\partial u}{\partial t} +\sum_{|\alpha|\le2b}a_\alpha(x,t)D^\alpha u =f(x,t,u,Du,\dots,D^{2b-1}u), $$
where the left-hand side is a linear uniformly parabolic operator of order $2b$. We prove sufficient growth conditions on the function $f$ with respect to the variables $u,Du,\dots,D^{2b-1}u$, such that the apriori estimate of the norm of the solution in the Sobolev space $W_p^{2b,1}$ is expressible in terms of the low-order norm in the Lebesgue space of integrable functions $L_{l,m}$.

UDC: 517.956.4

Received: 25.06.1997

DOI: 10.4213/mzm1431


 English version:
Mathematical Notes, 1998, 64:4, 488–495

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026