RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 3, Pages 344–364 (Mi mzm14305)

Modal companions for the special extensions of Nelson's constructive logic

A. G. Vishnevaa, S. P. Odintsovb

a Novosibirsk State University
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The Belnapian version $\mathsf{BS4}$ of the normal modal logic $\mathsf{S4}$ is related to Nelson's constructive logic $\mathsf{N4}^{\bot}$ in approximately the same way as the logic $\mathsf{S4}$ is related to the intuitionistic logic. For this reason, it is natural to define modal companions for logics extending $\mathsf{N4}^{\bot}$ as extensions of the Belnapian modal logic $\mathsf{BS4}$. It is proved that, for every special extension $L$ of $\mathsf{N4}^{\bot}$, the logic $\tau^BL$, where $\tau^B$ is a natural modification of the mapping $\tau$ assigning the least modal companion to each superintuitionistic logic, is the least modal companion of $L$ in the lattice of extensions of $\mathsf{BS4}$.

Keywords: strong negation, Nelson's logic, Belnapian modal logic, lattice of logics, modal companion, twist structure.

UDC: 510.64

MSC: 03B20, 03B45

Received: 07.03.2024
Revised: 30.09.2024

DOI: 10.4213/mzm14305


 English version:
Mathematical Notes, 2025, 117:3, 366–382

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026