RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 1, Pages 99–109 (Mi mzm14268)

On the torsion in the group $F/[M,N]$ in the case of combinatorial asphericity of the groups $F/M$ and $F/N$

O. V. Kulikovaab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: Let $F$ be a nonabelian free group with basis $A$, and let $M$ and $N$ be the normal closures of sets $R_M$ and $R_N$ of words in the alphabet $A^{\pm 1}$. As is known, there is no torsion in the group $F/[N,N]$; however, in general, a torsion in $F/[M, N]$ is possible. In the paper by Kuz'min and Hartley (1991), it was proved that if $R_M=\{v\}$, $R_N=\{w\}$, and the words $v$ and $w$ are not proper powers in $F$, then there is no torsion in $F/[M,N]$. In this paper, we obtain a sufficient condition for the absence of torsion in $F/[M,N]$, which enables us to generalize the result of Kuz'min and Hartley to arbitrary words $v$ and $w$.

Keywords: quotient group by a mutual commutant, asphericity, torsion.

UDC: 512.543

MSC: 20F05,20F06

Received: 23.02.2024
Revised: 29.06.2024

DOI: 10.4213/mzm14268


 English version:
Mathematical Notes, 2025, 117:1, 114–122

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026