RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 6, Pages 849–860 (Mi mzm14174)

This article is cited in 1 paper

Inductivity of the lattice of $\sigma$-local fitting classes

N. N. Vorob'ev, I. I. Staselka

Vitebsk State University named after P. M. Masherov

Abstract: All groups under consideration are finite. Let $\sigma = \{\sigma_i \mid i \in I\}$ be a partition of the set $\mathbb{P}$ of all primes, and let $f$ be any function from $\sigma$ to Fitting classes; such a function is called a Hartley $\sigma$-function (or, briefly, an $H_\sigma$-function). Consider the class
$$ LR_{\sigma}(f)=\bigl(G \mid G=1 \text{ or } G \ne 1 \text{ and } G^{\mathfrak{G}_{\sigma_i}\mathfrak{G}_{\sigma_i'}} \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G)\bigr) $$
of groups. If a Fitting class $\mathfrak{F}$ is such that $\mathfrak{F}=LR_{\sigma}(f)$ for some $H_\sigma$-function $f$, then $\mathfrak{F}$ is called a $\sigma$-local Fitting class and $f$, a $\sigma$-local definition of $\mathfrak{F}$. Given a complete lattice $\Theta$ of Fitting classes, the least upper bound of any set $\{\mathfrak{F}_j \mid j \in J\}$ of elements of $\Theta^{\sigma_l}$ is denoted by
$$ \bigvee_{\Theta^{\sigma_l}}(\mathfrak{F}_j \mid j \in J). $$
The lattice $\Theta^{\sigma_l}$ is said to be inductive if, given any set $\{\mathfrak{F}_j=LR_\sigma(f_j) \mid j \in J\}$ of Fitting classes $\mathfrak{F}_j \in \Theta^{\sigma_l}$ and any set $\{f_j \mid j \in J\}$ of $\Theta$-valued $H_\sigma$-functions $f_j$, where each $f_j$ is an integrated $H_\sigma$-function of the Fitting class $\mathfrak{F}_j$, the relation
$$ \bigvee_{\Theta^{\sigma_l}}(\mathfrak{F}_j \mid j \in J) =LR_\sigma\bigl(\bigvee_\Theta(f_j \mid j \in J)\bigr) $$
holds, where
$$ \bigvee_\Theta(f_j \mid j \in J) $$
denotes the $H_\sigma$-function $f$ such that $f(\sigma_i)$ is the least upper bound of $\{f_j(\sigma_i) \mid j \in J\}$ in $\Theta$ if
$$ \bigcup_{j \in J}f_j(\sigma_i) \ne \varnothing $$
and $f(\sigma_i)=\varnothing$ otherwise. It is proved that the lattice of all $\sigma$-local Fitting classes is inductive.

Keywords: finite group, Fitting class, complete lattice of Fitting classes, Hartley $\sigma$-function, $\sigma$-local Fitting class, inductive lattice of Fitting classes.

UDC: 512.542

MSC: 20F17, 20D10, 06B23

Received: 15.10.2023
Revised: 12.01.2025

DOI: 10.4213/mzm14174


 English version:
Mathematical Notes, 2025, 117:6, 939–949

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026