RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 4, Pages 543–562 (Mi mzm14119)

This article is cited in 3 papers

Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations

A. P. Kosarevab, A. A. Shkalikovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: We consider a $2 \times 2$ system of ordinary differential equations
$$ y'-By=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$
where $A=\operatorname{diag}\{a_1(x), a_2(x)\}$, $B=\{b_{kj}(x)\}_{k, j=1}$, and all functions occurring in the matrices are complex-valued and integrable. In the case
$$ a_1,a_2, b_{21},b_{12} \in W^n_1[0,1], \qquad b_{11}, b_{22} \in W^{n-1}_1[0,1], $$
we obtain $n+1$ terms of the asymptotic expansion in powers of $\lambda^{-1}$, $\lambda \to \infty$, of the fundamental matrix of solutions of this equation. These asymptotic expansions are valid in the half-planes $\Pi_{\kappa}=\{\lambda \in \mathbb{C} \mid \operatorname{Re}{\lambda} \ge -\kappa \}$, $\kappa \in \mathbb{R}$, and $-\Pi_{\kappa}$ if $a_1(x)-a_2(x) >0$. They hold in the sectors $S=\{\lambda \in \mathbb{C} \mid \lvert\operatorname{arg}\lambda\rvert \le \pi/2-\phi-\varepsilon\}$, $\varepsilon > 0$, and $-S$ under the condition that $\lvert\operatorname{arg}\{a_1(x)-a_2(x)\}\rvert<\phi<\pi /2$. The main novelty of the work is that we assume minimal conditions for the smoothness of the functions and in addition we obtain explicit formulae for matrices involved in asymptotic expansions. The results are also new for the Dirac system.

Keywords: spectral asymptotics for solutions of ordinary differential equations and systems, regular and nonregular boundary value problems, spectral problems.

UDC: 517

Received: 27.06.2023

DOI: 10.4213/mzm14119


 English version:
Mathematical Notes, 2023, 114:4, 472–488

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026