RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 4, Pages 533–551 (Mi mzm14105)

This article is cited in 10 papers

On the Existence and Properties of Convex Extensions of Boolean Functions

D. N. Barotov

Financial University under the Government of the Russian Federation, Moscow

Abstract: We study the problem of the existence of a convex extension of any Boolean function $f(x_1,x_2,\dots,x_n)$ to the set $[0,1]^n$. A convex extension $f_C(x_1,x_2,\dots,x_n)$ of an arbitrary Boolean function $f(x_1,x_2,\dots,x_n)$ to the set $[0,1]^n$ is constructed. On the basis of a single convex extension $f_C(x_1,x_2,\dots,x_n)$, it is proved that any Boolean function $f(x_1,x_2,\dots,x_n)$ has infinitely many convex extensions to $[0,1]^n$. Moreover, it is proved constructively that, for any Boolean function $f(x_1,x_2,\dots,x_n)$, there exists a unique function $f_{DM}(x_1,x_2,\dots,x_n)$ being its maximal convex extensions to $[0,1]^n$.

Keywords: Boolean function, convex extension of a Boolean function, convex function, global optimization, local minimum.

UDC: 517.518.244+519.85+512.563

MSC: 65K05, 90C25, 46N10

Received: 14.07.2023
Revised: 23.10.2023

DOI: 10.4213/mzm14105


 English version:
Mathematical Notes, 2024, 115:4, 489–505

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026