RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 3, Pages 370–389 (Mi mzm14045)

This article is cited in 3 papers

On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems

S. E. Pastukhova

MIREA — Russian Technological University, Moscow

Abstract: In the space $\mathbb R^d$, we consider matrix elliptic operators $L_\varepsilon$ of arbitrary even order $2m\ge 4$ with measurable $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. We construct an approximation to the resolvent of this operator with an error of the order of $\varepsilon^2$ in the operator $(L^2\to L^2)$-norm.

Keywords: homogenization, approximation to the resolvent, higher-order elliptic system.

UDC: 517

Received: 25.12.2022
Revised: 24.04.2023

DOI: 10.4213/mzm14045


 English version:
Mathematical Notes, 2023, 114:3, 322–338

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026