RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 3, Pages 392–404 (Mi mzm13718)

This article is cited in 1 paper

On Numbers Not Representable as $n+w(n)$

P. A. Kucheryavyi

Faculty of Mathematics, National Research University Higher School of Economics, Moscow

Abstract: Let $w(n)$ be an additive nonnegative integer-valued arithmetic function equal to $1$ on primes. We study the distribution of $n+w(n)$ modulo a prime $p$ and give a lower bound for the density of numbers not representable as $n+w(n)$.

Keywords: number of prime divisors, Perron's formula, additive function.

UDC: 511

PACS: 02.10.De

MSC: 11M99

Received: 08.09.2022
Revised: 05.10.2022

DOI: 10.4213/mzm13718


 English version:
Mathematical Notes, 2023, 113:3, 384–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026