RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 112, Issue 2, Pages 239–250 (Mi mzm13674)

Papers published in the English version of the journal

Infinitely Many Solutions of Nonlocal Kirchhoff-Type Equations via Perturbation Methods

D. T. Luyenab

a International Center for Research and Postgraduate Training in Mathematics, Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, 10307 Vietnam
b Department of Mathematics, Hoa Lu University, Ninhbinh, 430000 Vietnam

Abstract: We study the multiplicity of weak solutions to the boundary-value problem
\begin{alignat}{2} - M\biggl(\iint_{\mathbb R^{2N}}|u(x)-u(y)|^2 K(x-y)\,d x\,d y\biggr)\mathscr L^s_K u &= f(x,u)+ g(x,u)&\qquad &\text{in}\quad \Omega,\nonumber \\ u&=0 &\qquad &\text{in}\quad \mathbb R^N\backslash \Omega, \nonumber \end{alignat}
where $\mathscr L^s_K$ is a nonlocal operator with singular kernel $K$, $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ with dimension $N>2s$, parameter $s\in (0,1)$, $M$ is continuous function and $f(\cdot,\xi)$ is odd in $\xi$, $g(\cdot,\xi)$ is a perturbation term. By using the perturbation method of Rabinowitz, we show that there are infinitely many weak solutions to the problem.

Keywords: Kirchhoff-type problems, fractional Sobolev spaces, critical points, perturbation methods, multiple solutions.

Received: 06.08.2020
Revised: 14.02.2022

Language: English


 English version:
Mathematical Notes, 2022, 112:2, 239–250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026