RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 2, Pages 171–181 (Mi mzm13634)

On the Homogeneity of Products of Topological Spaces

A. Yu. Groznova

Lomonosov Moscow State University

Abstract: Three intermediate classes $\mathscr R_1\subset\mathscr R_2\subset\mathscr R_3$ between the classes of $F$-spaces and of $\beta\omega$-spaces are considered. It is proved that products of infinite $\mathscr R_2$-spaces and, under the assumption of the existence of a discrete ultrafilter, of infinite $\beta\omega$-spaces are never homogeneous. Under additional set-theoretic assumptions, the metrizability of any compact subspace of a countable product of homogeneous $\beta\omega$-spaces is proved.

Keywords: $\mathscr R_1$-space, $\mathscr R_2$-space, $\mathscr R_3$-space, Rudin–Keisler order, Rudin–Blass order, $\beta\omega$-space, NNCPP$_\kappa$, homogeneity of products of topological spaces.

UDC: 515.12

Received: 28.06.2022
Revised: 05.09.2022

DOI: 10.4213/mzm13634


 English version:
Mathematical Notes, 2023, 113:2, 182–190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026