RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 1, Pages 46–57 (Mi mzm13617)

This article is cited in 1 paper

Spectral Synthesis on the Reduced Heisenberg Group

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University

Abstract: The spectral synthesis problem for the phase space $\mathbb{C}^n$ associated with the reduced Heisenberg group $H^n_{\rm{red}}$ is studied. The paper deals with the case of subspaces in $\mathcal{E}(\mathbb{C}^n)$ invariant under the twisted shifts
$$ f(z)\to f(z-w)e^{(i/2)\operatorname{Im}\langle z,{w}\rangle},\qquad w\in\mathbb{C}^n, $$
and the action of the unitary group $U(n)$. It is shown that any such subspace is generated by the root vectors of a special Hermite operator contained in this subspace. As a corollary, we obtain the spectral synthesis theorem for subspaces in $\mathcal{E}(H^n_{\rm{red}})$ invariant under the unilateral shifts and the action of the unitary group $U(n)$.

Keywords: spherical harmonics, Heisenberg group, transmutation operators.

UDC: 517.444

Received: 11.06.2022
Revised: 01.08.2022

DOI: 10.4213/mzm13617


 English version:
Mathematical Notes, 2023, 113:1, 49–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026