RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 3, Pages 323–338 (Mi mzm13569)

This article is cited in 1 paper

Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected

B. B. Bednovab

a I. M. Sechenov First Moscow State Medical University
b Bauman Moscow State Technical University

Abstract: In a three-dimensional normed space $X$, any bounded Chebyshev set is monotone path connected if and only if one of the following two conditions holds: (1) the set of extreme points of the sphere in the dual space is dense in this sphere; (2) $X=Y\oplus_\infty \mathbb R$ (i.e., the unit sphere of $X$ is a cylinder).

Keywords: Chebyshev set, monotone path connected set, bounded Chebyshev set.

UDC: 517.982.256+517.982.252

Received: 29.04.2022
Revised: 09.01.2023

DOI: 10.4213/mzm13569


 English version:
Mathematical Notes, 2023, 114:3, 283–295

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026