RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 63, Issue 6, Pages 803–811 (Mi mzm1350)

Use of complex analysis for deriving lower bounds for trigonometric polynomials

A. S. Belov

Ivanovo State University

Abstract: It is shown that for any distinct natural numbers $k_1,\dots,k_n$ and arbitrary real numbers $a_1,\dots,a_n$ the following inequality holds:
$$ -\min_x\sum_{j=1}^na_j\bigl(\cos(k_jx)-\sin(k_jx)\bigr) \ge B\biggl(\frac 1{1+\ln n}\sum_{j=1}^na_j^2\biggr)^{1/2}, \qquad n\in\mathbb N, $$
where $B$ is a positive absolute constant (for example, $B=1/8$). An example shows that in this inequality the order with respect ton, i.e., the factor $(1+\ln n)^{-1/2}$, cannot be improved. A more elegant analog of Pichorides' inequality and some other lower bounds for trigonometric sums have been obtained.

UDC: 517.5

Received: 12.04.1997

DOI: 10.4213/mzm1350


 English version:
Mathematical Notes, 1998, 63:6, 709–716

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026