Abstract:
In this paper, the Dirichlet problem for quasilinear elliptic equations is studied. New a priori estimates of the solution and its gradient are obtained. These estimates are derived without any assumptions on the smoothness of the coefficients and the right-hand side of the equation. Moreover, an arbitrary growth of the right-hand side with respect to the gradient of the solution is assumed. On the basis of the resulting estimates, existence theorems are proved.