RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 111, Issue 4, Pages 525–539 (Mi mzm13347)

Reverse Inequalities for Subelliptic Functions

V. S. Klimov

P.G. Demidov Yaroslavl State University

Abstract: We study a wedge $\mathscr{K}(A)$ of solutions of the inequality $A(u) \ge 0$, where $A$ is a linear elliptic operator of order $2m$. For the elements of the wedge, we establish an interior estimate of the form
$$ \|u;H_1^{2m}(\omega)\| \le C(\omega,\Omega)\|u;L(\Omega)\|, $$
where $\omega$ is a compact subset of $\Omega$, $H_1^{2 m}(\omega)$ is the Nikol'skii space, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of the function $u$. Similar estimates that hold up to the boundaries are proved for the functions from $\mathscr{K}(A)$ satisfying the boundary conditions.

Keywords: wedge, function, norm, elliptic inequality, Banach space.

UDC: 517.956.222

Received: 04.11.2021
Revised: 26.12.2021

DOI: 10.4213/mzm13347


 English version:
Mathematical Notes, 2022, 111:4, 549–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026