RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 6, Pages 971–979 (Mi mzm13171)

Papers published in the English version of the journal

Large Solutions to Elliptic Systems of $\infty$-Laplacian Equations

Jianduo Yu, Weifeng Wo

School of Mathematics and Statistics, Ningbo University, Ningbo, 315211 China

Abstract: In this paper, we study the existence, uniqueness and boundary behavior of positive boundary blow-up solutions to the quasilinear system $\Delta_{\infty}u=a(x)u^{p}v^{q}$, $\Delta_{\infty}v=b(x)u^{r}v^{s}$ in a smooth bounded domain $\Omega\subset R^{N}$, with the explosive boundary condition $u=v=+\infty$ on $\partial\Omega$, where the operator $\Delta_{\infty}$ is the $\infty$-Laplacian, the positive weight functions $a(x)$, $b(x)$ are Hölder continuous in $\Omega$, and the exponents verify $p$, $s > 3$, $q$, $r>0$, and $(p-3)(s-3) > qr$.

Keywords: boundary behavior, quasilinear elliptic system, large solution.

Received: 22.06.2019

Language: English


 English version:
Mathematical Notes, 2021, 109:6, 971–979

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026