RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 63, Issue 4, Pages 509–521 (Mi mzm1311)

This article is cited in 14 papers

Extensions of Laguerre operators in indefinite inner product spaces

V. A. Derkach

Donetsk National University

Abstract: The Laguerre–Sonin polynomials $L_n^{(\alpha)}$ are orthogonal in linear spaces with indefinite inner product if $\alpha<-1$. We construct the completion $\Pi(\alpha)$ of this space and describe self-adjoint extensions of the Laguerre operator $l(y)=xy''+(1+\alpha-x)y'$, $\alpha<-1$, in the space $\Pi(\alpha)$. In particular, we write out the self-adjoint extension of the Laguerre operator whose eigenfunctions coincide with the Laguerre–Sonin polynomials and form an orthogonal basis in $\Pi(\alpha)$.

UDC: 517.98

Received: 13.05.1996
Revised: 23.10.1997

DOI: 10.4213/mzm1311


 English version:
Mathematical Notes, 1998, 63:4, 449–459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026