RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 110, Issue 4, Pages 507–523 (Mi mzm13084)

This article is cited in 2 papers

Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk

Abstract: We prove that the spectrum of a periodic 3D magnetic Schrödinger operator whose electric potential $V=d\mu/dx$ is the derivative of a measure is absolutely continuous provided that the distribution $d|\mu|/dx$ is $(-\Delta)$-bounded in the sense of quadratic forms with bound not exceeding some constant $C(A)\in(0,1)$, and the periodic magnetic potential $A$ satisfies certain conditions, which, in particular, hold if $A\in H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1$ or $A\in C(\mathbb R^3;\mathbb R^3)\cap H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1/2$.

Keywords: absolutely continuous spectrum, periodic Schrödinger operator.

UDC: 517.958+517.984.5

Received: 25.03.2021

DOI: 10.4213/mzm13084


 English version:
Mathematical Notes, 2021, 110:4, 497–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026