RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 4, Pages 500–507 (Mi mzm13040)

This article is cited in 6 papers

Estimates of Derivatives in Sobolev Spaces in Terms of Hypergeometric Functions

T. A. Garmanova

Lomonosov Moscow State University

Abstract: The paper deals with sharp estimates of derivatives of intermediate order $k\le n-1$ in the Sobolev space $\mathring W^n_2[0;1]$, $n\in\mathbb N$. The functions $A_{n,k}(x)$ under study are the smallest possible quantities in inequalities of the form
$$ |y^{(k)}(x)|\le A_{n,k}(x)\|y^{(n)}\|_{L_2[0;1]}. $$
The properties of the primitives of shifted Legendre polynomials on the interval $[0;1]$ are used to obtain an explicit description of these functions in terms of hypergeometric functions. In the paper, a new relation connecting the derivatives and primitives of Legendre polynomials is also proved.

Keywords: Sobolev space, Legendre polynomials, embedding constants, analytic inequalities, hypergeometric functions.

UDC: 517.518.23+517.588

Received: 29.11.2020

DOI: 10.4213/mzm13040


 English version:
Mathematical Notes, 2021, 109:4, 527–533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026