RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 63, Issue 3, Pages 457–467 (Mi mzm1303)

This article is cited in 1 paper

Sequences of maximal terms and central exponents of derivatives of Dirichlet series

M. N. Sheremeta

Ivan Franko National University of L'viv

Abstract: For the Dirichlet series corresponding to a function $F$ with positive exponents increasing to $\infty$ and with abscissa of absolute convergence $A\in(-\infty,+\infty]$, it is proved that the sequences $\bigl(\mu(\sigma,F^{(m)})\bigr)$ of maximal terms and $\bigl(\Lambda(\sigma,F^{(m)})\bigr)$ of central exponents are nondecreasing to $\infty$ as $m\to\infty$ for any given $\sigma<A$, and
$$ \varlimsup_{m\to\infty}\frac{\ln\mu(\sigma,F^{(m)})}{m\ln m}\le1 \quad\text{and}\quad \varlimsup_{m\to\infty}\frac{\ln\Lambda(\sigma,F^{(m)})}{\ln m}\le1. $$
Necessary and sufficient conditions for putting the equality sign and replacing $\varlimsup$ by $\lim$ in these relations are given.

UDC: 517.537.2

Received: 01.04.1996

DOI: 10.4213/mzm1303


 English version:
Mathematical Notes, 1998, 63:3, 401–410

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026