RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 1, Pages 57–66 (Mi mzm12838)

This article is cited in 2 papers

Density of Derivatives of Simple Partial Fractions in Hardy Spaces in the Half-Plane

N. A. Dyuzhina

Moscow Center for Fundamental and Applied Mathematics, Moscow Lomonosov State University

Abstract: It is proved that the sums
$$ \sum_{k=1}^{n} \frac{1}{(z-a_{k})^{2}}, \qquad \operatorname{Im}a_{k} < 0, \quad n \in \mathbb{N}, $$
are dense in all Hardy spaces $H_{p}$, $1<p< \infty$, in the upper half-plane and in the space of functions analytic in the upper half-plane, continuous in its closure, and tending to zero at infinity.

Keywords: approximation, simple partial fractions, density, Hardy spaces.

UDC: 517.538.52+517.547.54

Received: 16.07.2020

DOI: 10.4213/mzm12838


 English version:
Mathematical Notes, 2021, 109:1, 46–53

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026