RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 112, Issue 5, Pages 789–796 (Mi mzm12768)

Papers published in the English version of the journal

Auslander condition and Gorenstein rings

Dejun Wu

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050 China

Abstract: Let $R$ be a left Noetherian ring satisfying the Auslander condition. It is proven that a left $R$-module $M$ is Gorenstein injective if and only if $M$ is strongly cotorsion and $\mathrm{Ext}_R^{i\geq1}(I,M)=0$ for any injective left $R$-module $I$; a right $R$-module $M$ is Gorenstein flat if and only if $M$ is strongly torsion-free and Tor$^R_{i\geq1}(M,J)=0$ for any injective left $R$-module $J$. We also prove that if $R$ is a commutative Noetherian ring with splf $R$ finite, then the local ring $R_{\mathfrak{p}}$ is Gorenstein for every prime ideal $\mathfrak{p}$ of $R$ if and only if the cycles of every acyclic complex of PGF-modules are PGF-modules if and only if every complex of PGF-modules is a dg-PGF complex.

Keywords: Gorenstein module, Gorenstein ring, cotorsion pair.

Received: 25.03.2020
Revised: 25.06.2022

Language: English


 English version:
Mathematical Notes, 2022, 112:5, 789–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026