RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 111, Issue 1, Pages 107–116 (Mi mzm12722)

This article is cited in 2 papers

Asymptotics of the Independence Number of a Random Subgraph of the Graph $G(n,r,<s)$

A. M. Raigorodskiiabcd, V. S. Karasb

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude

Abstract: The probabilistic version of a classical problem of extremal combinatorics is considered. The stability theorem which says that the independence number of a random subgraph of the graph $G(n,r,s)$ remains asymptotically constant when edges are randomly removed is generalized to the case of nonconstant parameters.

Keywords: graph $G(n,r,s)$, independence number, random subgraph, $s$-intersecting set, asymptotics.

UDC: 519

Received: 12.12.2020

DOI: 10.4213/mzm12722


 English version:
Mathematical Notes, 2022, 111:1, 124–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026