RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 6, Pages 929–937 (Mi mzm12717)

This article is cited in 2 papers

Smooth Nonprojective Equivariant Completions of Affine Space

K. V. Shakhmatovab

a Lomonosov Moscow State University
b National Research University "Higher School of Economics", Moscow

Abstract: An open translation-equivariant embedding of the affine space $\mathbb A^n$ into a complete nonprojective algebraic variety $X$ is constructed for any $n\ge 3$. The main tool is the theory of toric varieties. In the case $n=3$, the orbit structure of the obtained action on the variety $X$ is described.

Keywords: nonprojective variety, toric variety, additive action, completion.

UDC: 512.745

Received: 11.03.2020

DOI: 10.4213/mzm12717


 English version:
Mathematical Notes, 2021, 109:6, 954–961

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026