RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 1, Pages 106–111 (Mi mzm12605)

This article is cited in 1 paper

On Lie Ideals and Automorphisms in Prime Rings

N. Rehman

Aligarh Muslim University

Abstract: Let $R$ be a prime ring of characteristic different from $2$ with center $Z$ and extended centroid $C$, and let $L$ be a Lie ideal of $R$. Consider two nontrivial automorphisms $\alpha$ and $\beta$ of $R$ for which there exist integers $m,n\ge 1$ such that $\alpha(u)^n+\beta(u)^m=0$ for all $u\in L$. It is shown that, under these assumptions, either $L$ is central or $R\subseteq M_2(C)$ (where $M_2(C)$ is the ring of $2 \times 2$ matrices over $C$), $L$ is commutative, and $u^{2} \in Z$ for all $u \in L$. In particular, if $L = [R,R]$, then $R$ is commutative.

Keywords: prime ring, Lie ideal, automorphism.

UDC: 512

Received: 14.02.2018

DOI: 10.4213/mzm12605


 English version:
Mathematical Notes, 2020, 107:1, 140–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026