RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 6, Pages 873–887 (Mi mzm12412)

This article is cited in 3 papers

A Generalization of Schep's Theorem on the Positive Definiteness of a Piecewise Linear Function

V. P. Zastavnyi

Donetsk National University

Abstract: Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on $\mathbb{R}$ is equivalent to positive definiteness on $\mathbb{Z}$. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.

Keywords: positive definite functions, Fourier transform, Bochner–Khinchine theorem, piecewise linear functions with equidistant nodes.

UDC: 517.5+519.213

Received: 15.04.2019
Revised: 09.08.2019

DOI: 10.4213/mzm12412


 English version:
Mathematical Notes, 2020, 107:6, 959–971

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026