RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 2, Pages 231–237 (Mi mzm12140)

This article is cited in 5 papers

Papers published in the English version of the journal

Porous Exponential Domination in Harary Graphs

C. Çiftçia, A. Aytaçb

a Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu, 52200 Turkey
b Department of Mathematics, Faculty of Science, Ege University, Izmir, 35100 Turkey

Abstract: A porous exponential dominating set of a graph $G$ is a subset $S$ such that, for every vertex $v$ of $G$, $\sum_{u\in S}({1}/{2})^{d(u,v)-1}\geqslant 1$, where $ d(u,v) $ is the distance between vertices $ u $ and $ v $. The porous exponential domination number, $ \gamma_e^*(G) $, is the minimum cardinality of a porous exponential dominating set. In this paper, we determine porous exponential domination number of the Harary graph $ H_{k,n} $ for all $ k $ and $ n $.

Keywords: graph theory, porous exponential domination, Harary graph.

Received: 06.08.2018
Revised: 16.04.2019

Language: English


 English version:
Mathematical Notes, 2020, 107:2, 231–237

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026