RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 3, Pages 467–480 (Mi mzm12118)

This article is cited in 4 papers

Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on $\mathbb{R}^n$

S. M. Umarkhadzhievab

a Academy of Sciences of Chechen Republic
b Complex Research Institute named after Kh. I. Ibragimov, Russian Academy of Sciences, Groznyi

Abstract: The Riesz potentials $I^\alpha f$, $0<\alpha<\infty$, are considered in the framework of a grand Lebesgue space $L^{p),\theta}_a$, $1<p<\infty$, $\theta>0$, on $\mathbb{R}^n$ with grandizers $a\in L^1(\mathbb{R}^n)$, which are understood in the case $\alpha\ge n/p$ in terms of distributions on test functions in the Lizorkin space. The images under $I^\alpha$ of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order $\alpha$ in this subspace.

Keywords: Riesz potential, space of Riesz potentials, hypersingular integral, grand Lebesgue space, grandizer, Lizorkin space of test functions, identity approximation.

UDC: 517.982+517.983

Received: 30.11.2017

DOI: 10.4213/mzm12118


 English version:
Mathematical Notes, 2018, 104:3, 454–464

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026