RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 3, Pages 374–395 (Mi mzm12112)

This article is cited in 4 papers

On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation

S. M. Grudskya, A. V. Rybkinb

a Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
b University of Alaska Fairbanks

Abstract: The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller's criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

Keywords: Hankel operator, trace-class operator, Korteweg–de Vries equation, inverse problem method.

UDC: 517.957+517.984.2

Received: 05.02.2018

DOI: 10.4213/mzm12112


 English version:
Mathematical Notes, 2018, 104:3, 377–394

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026