RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 2, Pages 241–245 (Mi mzm12046)

On a Property of the Franklin System in $C[0,1]$ and $L^1[0,1]$

V. G. Mikayelyan

Yerevan State University

Abstract: A problem posed by J. R. Holub is solved. In particular, it is proved that if $\{\widetilde f_n\}$ is the normalized Franklin system in $L^1[0,1]$, $\{a_n\}$ is a monotone sequence converging to zero, and $\sup_{n\in\mathbb N}\|{\sum_{k=0}^na_k\widetilde f_k}\|_1<+\infty$, then the series $\sum_{n=0}^{\infty}a_n\widetilde f_n$ converges in $L^1[0,1]$. A similar result is also obtained for $C[0,1]$.

Keywords: Franklin system, bounded completeness, monotonically bounded completeness.

UDC: 517.51

Received: 18.04.2018

DOI: 10.4213/mzm12046


 English version:
Mathematical Notes, 2020, 107:2, 284–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026