Abstract:
At present, a plane algebraic curve can be parametrized in the following two cases: if its genus is equal to 0 or 1 and if it has a large group of birational automorphisms. Here we propose a new polyhedron method (involving a polyhedron called a Hadamard polyhedron by the author), which allows us to divide the space $\mathbb R^2$ or $\mathbb C^2$ into pieces in each of which the polynomial specifying the curve is sufficiently well approximated by its truncated polynomial, which often defines the parametrized curve. This approximate parametrization in a piece can be refined by means of the Newton method. Thus, an arbitrarily exact piecewise parametrization of the original curve can be obtained.
Keywords:algebraic curve, genus of a curve, piecewise parametrization, Hadamard polyhedron, Newton method.